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Fast Primality Tests for Numbers Less Than 50 I0 

By G. C. Kurtz, Daniel Shanks and H. C. Williams* 

Abstract. Consider the doubly infinite set of sequences A ( n) given by 

A(n + 3) = rA(n + 2) - sA(n + 1) + A(n) 

with A(-1) = s, A(O) = 3, A(1) = r. For a given pair { r, s }, the "signature" of n is defined 

to be the sextet 

A(-n - 1), A(-n), A(-n + 1), A(n - 1), A(n), A(n + 1), 

each reduced modulo n. Primes have only three types of signatures, depending on how they 
split in the cubic field generated by X3 - rx2 + sx - 1. An "acceptable" composite is a 

composite integer which has the same type of signature as a prime; such integers are very rare. 
In this paper, a description is given of the results of a computer search for all acceptable 

composites < 50 * 109 in the Perrin sequence (r = 0, s = -1). Also, some numbers which are 
acceptable composites for both the Perrin sequence and the sequence with r = 1, s = 0 are 
presented. 

1. Introduction. Let { r, s } be a pair of rational integers that occur as the 

coefficients in the cubic function 

(1) f(x) = X3 -rX2 + Sx-1 

For a given pair, define the cubic recurrence A(n) for n = ..., -2, -1, 1, 2, ... by 

A(-1) = s, A(O) = 3, A(1) = r, and 

(2) A(n + 3) = rA(n + 2) -sA(n + 1) + A(n), or 

A(n) = sA(n + 1) - rA(n + 2) + A(n + 3). 

If the discriminant d of f (x) is not zero, one has, explicitly, 

(3) A(n) = n + #n + n 

where a, /3 and y are the three distinct roots of f(x) = 0. Four examples that have 

the smallest discriminants in absolute value (# 0) are those given by 

(4) {rs} = ({0 -1i), (1,0 , {1, -1i), {-1, -2} for 

d= -23, -31, -44, + 49, 

respectively. 
In their elaborate [1], Adams and Shanks treat these sequences (2) and their 

possible use in primality tests. Their treatment is general, but most of the numerical 
work there concerns the first three cases in (4): d = -23, -31, -44. The present note 

is a sequel to [1] that answers some of the questions raised there. We refer the reader 
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to [1] for much material that we do not examine or repeat here. We confine ourselves 
here to d = -23 and -31. 

The case {O, -1) for d = -23 is called Perrin's sequence in [1] because of Perrin's 
1899 note [2] which examined this A(n) for n > 0. We also call it Perrin's sequence 
here although it does have an earlier history. Specifically, in 1876 Lucas [3] already 
discussed this A(n) for n > 0 and proved that 

(5) n I A(n) 
if n is a prime, so (5) is a necessary condition for primality. If, in addition, 

(6) n+A(m) foreveryO<m<n, 

then Lucas showed that (6) and (5) constitute a sufficient condition for primality. 
But (6) is clearly not an efficient test; it has no practical value. 

Note that (6) is not a necessary condition since, e.g., 

223 1 A(112) 

is found in [1, p. 298]. Likewise, (5) is not a sufficient condition since, e.g., 

5212 = 2714411 A (271441) 

is given in [1, p. 255]. 
To strengthen and simplify these tests, [1] proceeds as follows: First, unlike [3] and 

[2], A(n) is also extended backwards for n = 0, -1, -2,..., as we give it in (2). 
Next, (5) is rewritten as 

A (n)-=A(1) (mod n) 

and then generalized to 

(7) A(-n) A(-1), A(n) A(1), (modn). 

This double test is valid for every prime n and any A(n) in (2). It strengthens the 
single test (5); e.g., 271441, which is the smallest composite that satisfies (5), fails to 
satisfy the left side of (7). Next, [1] gives a simple O(log n) algorithm for computing 
the sextet: 

(8) A(-n - 1), A(-n), A(-n + 1), A(n - 1), A(n), A(n + 1) (modn). 
This is called the signature of n. It enables us to make the double test (7) very 
quickly. The four additional numbers in (8) contain further useful information. 

Every prime n = p will have exactly one out of only three possible types of prime 
signatures. These are the S signature: 

A (-2), A (-1), A (0), A (0), A (1), A (2), (mod n) 

which we may give explicitly as 

(9) 52 - 2r, s,3,3, r, r2 - 2s, (mod n), 

the I signature: 

(10) r, s, D', D, r, s, (mod n), 

and the Q signature: 

(11) A, s, B, B, r, C, (mod n), 
where A, B, C, D', and D must satisfy certain specific congruences. For example, in 
Perrin's sequence, p = 23 and 59 have an S signature, p = 3 and 13 have an I 
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signature, and p = 5 and 7 have a Q signature. We call these three types of primes S 
primes, I primes, and Q primes, respectively. Of course, all three signatures contain 

(12) , , , , r, 

since all primes satisfy (7). 
We note that an S prime also satisfies 

(13) (d/p) # -1, 

so in Perrin's sequence, with d = -23, every S prime satisfies 

(13a) p - 0,1,2,3,4,6,8,9,12,13,16or18 (mod23). 

For any A(n), we say that n has an acceptable signature for that A(n) if it has an 
S signature, (9) and (13); or an I signature (10); or a Q signature (11). Clearly, that 
is not a complete definition since we have not stated (here) what the aforementioned 
congruences are for A, B. .... They are given in [1], but luckily, in our results below, 
we do not need these congruences so, for brevity, we do not repeat them here. Of 
course, the immediate question is this: Given an A(n), does any composite n have an 
acceptable signature? For the Perrin sequence the answer is "yes". In [1], we saw 
that 

(14) T, = 27664033 = 3037 * 9109 

satisfies (9) and (13a), and therefore has an S signature. We call a composite an 
acceptable composite if it has an acceptable signature. We learn below that (14) is the 
smallest acceptable composite for the Perrin sequence. 

We knew, a priori, that composites with acceptable signatures must be very rare. 
Four reasons for this were given in [1, Section 4]. There are two different sieves 
defined there that can sieve out large classes of composite n that cannot satisfy (12) 
and, ipso facto, cannot be acceptable composites. Indeed, we used these sieves in the 
computations described in Section 5 below to determine all acceptable composites 
< 50 x 109 in Perrin's sequence. We found: 

Fact 1. Up to 50 x 109 there are only 55 acceptable composites for Perrin's 
sequence. That is, up to that limit, only one composite out of about 870 million 
composites is acceptable. This confirms the characterization in the title of [1]: these 
are strong primality tests. 

In fact, our results are even stronger, but to understand them we must first 
understand S primes. 

2. The S Primes and S Composites. The S primes play a very special role in the 
cubic fields generated by (1). We have 

(15) They are the primes p that split completely in the cubic fields 
so that we have 

(15a) x3 -rx2 + SX-1 (x-a)(x-b)(x-c) (mod p). 

Equivalently, we have 

(16) A(n) mod p has a period that divides p - 1. 



694 G. C. KURTZ, DANIEL SHANKS AND H. C. WILLIAMS 

We also have 
For all discriminants d not equal to a square, such as our 

(17) d = -23, -31 and -44 above, the S primes have an asymp- 
totic density of 1/6. 

For Perrin's sequence the S primes, and they alone, may be represented as 

(18) p = a2 + 23b2, 

while for { r, s = {1,0} with d = -31 we have 

(18a) p = a2 + 31b2. 

It is a striking result in [1] that while the S primes have a density of only 1/6 and 
while it is easy to construct acceptable composites, such as (14), that have S 
signatures, no acceptable composite was constructed there for Perrin's sequence that 
has a Q or I signature, even though Q and I primes, taken together, are five times 
as numerous as the S primes. It was even suggested in [1] that Q or I type 
acceptable composites may not exist in Perrin's sequence! 

We established in Fact 1 that acceptable composites are very rare in this sequence, 
and a second motivation for the present investigation was to verify that all 
acceptable composities ? 50 - 109 have S signatures. That is true; we found 

Fact 2. If any n < 50 109 has a Perrin signature containing 

(19) ,-1, , , , 

this being the appropriate special case of (12), and if its signature is not a Perrin S 
signature: 

(20) 1, -1, 3, 3,0,2, 

then n is a prime; i.e., n is a Q or I prime. 
This strong formulation makes it unnecessary in the present paper to repeat all the 

details of the Q and I signatures. We mentioned this omission in the discussion 
above after (13a). The minimal test (19) suffices to establish the primality of these 
numbers. 

There are two kinds of S-type acceptable composites constructed in [1]. The 
Carmichael type is a Carmichael number where each of its prime factors is an S 
prime. The smallest example is 

C, = 7045248121 = 821 * 1231 * 6971 

where 

821 = 272 + 23 22, 1231 = 322 + 23 32, 6971 = 182 + 23 172. 
It follows from (16) that such a Carmichael number has an S signature, and since it 
also satisfies (13) it is acceptable. 

There are 2163 Carmichael numbers < 25 - 109 (see [4]) but only two of them 
have S primes for each prime divisor. The second is 

C2 = 7279379941 = 211 . 3571 * 9661. 

This great rarity (2 out of 2163) stems from the fact that S primes have an 
asymptotic density of 1/6, and, for small primes, the local density is even smaller 
(only 23 and 59 are S primes for the 24 odd primes < 100) and yet each Carmichael 
number must have at least three distinct prime divisors. 
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Next, we generalize the Oi and Ti in [1] and define the generalized Owings type. 

Suppose 

(21) N = P1P2 

for two S primes 

(22) P1 = ck + 1 and P2 = dk + 1 

for which the periods of A(n) mod Pi and A(n) mod P2 both divide k. Then (16) 

implies that N is an acceptable composite with an S signature. We designate this N 

as 

(23) N = (k.cd), 

where in all our examples below we allow one digit for c and two for d. Thus T1 in 

(14) is 

T = (3036.103) 

while 

01 = 46672291 = (4830.102) 

is the second smallest acceptable composite for the Perrin sequence. 
If c = 1, the requirement that A(n) mod Pi have a period dividing k is automati- 

cally satisfied. In the Oi type in [1], here designated as (k.102), it was indicated that 

the probability that the period of A(n) mod P2 divides k is 4. Subsequently [5], that 

probability of 1 was proven rigorously. Therefore, if we have any two primes 

Pi=k+1, p2=2k+1, 

the probability that N is acceptable is 1/144 since each p must be an S prime. 

In [1], we listed C1 and C2 and there is only one more Ci less than 50* 109. In [1] 

we listed all seven Oi = (k.102) < 25 * 109 and there are five more < 50 109. In [1] 

we listed all five Ti = (k.103) < 109 and there are nine more < 50 * 109. There are 

25 additional (k.cd) with .cd # .102 or .103 that are less than 50* 109. None of 

these were given in [1]; the smallest is 

517697641 = 6311 * 82031 = (6310.113). 

These 3 + 12 + 14 + 25 acceptable composites < 50 * 109 comprise 54 out of the 

55 composites referred to in Fact 1. 
All 55 are listed in Table 1. The only new type is found in # 38. It is 

(24) N = 24306384961 = 19 * 53 * 79 * 89 * 3433. 

This N has an S signature (20) and satisfies (13). It is, in fact, a Carmichael number, 

but it is doubly fortuitous that it satisfies (13) and (20). While 3433 is an S prime, 

the four small factors are all Q primes, see [1, p. 298]. Therefore, the periods of A(n) 

mod p do not divide p - 1. The four periods are 180, 1404, 3120, and 3960, 

respectively, and so it is just luck that these four periods all divide N - 1 and that N 

thereby has an S signature. Further, Q primes satisfy (d/p) = -1, not (13), and it 

was only because we have an even number of Q factors that (13) is satisfied. 

No doubt other new (and freakish) types will occur beyond 50 * 109, but the main 

point in this section is that all acceptables < 50 * 109 have S signatures. Therefore, 

Perrin's sequence gives us a very easy, efficient and elegant sufficient test for all Q 

and I primes < 50 * 109. These comprise 5/6 of all primes < 50 * 109. 
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TABLE 1 

Composite Factorization (k.cd) In [1] 

1 27664033 ( 3037)( 9109) ( 3036.103) Tj 2 46672291 ( 4831)( 9661) ( 4830.102) 01 
3 102690901 ( 5851)( 17551) ( 5850.103) T2 
4 130944133 ( 6607)( 19819) ( 6606.103) T3 
5 517697641 ( 6311)( 82031) ( 6310.113) 
6 545670533 ( 13487)( 40459) ( 13486.103) T4 
7 801123451 ( 8951)( 89501) ( 8950.110) 
8 855073301 ( 16883)( 50647) ( 16882.103) T5 
9 970355431 ( 22027)( 44053) ( 22026.102) 02 

10 1235188597 ( 17573)( 70289) ( 17572.104) 
11 3273820903 ( 40459)( 80917) ( 40458.102) 06 
12 3841324339 ( 25303)(151813) ( 25302.106) 
13 3924969689 ( 25577)(153457) ( 25576.106) 
14 4982970241 ( 26681)(186761) ( 26680.107) 
15 5130186571 ( 50647)(101293) ( 50646.102) 07 
16 5242624003 ( 51199)(102397) ( 51198.102) 08 
17 6335800411 ( 33941)(186671) ( 16970.211) 
18 7045248121 (821)(1231)(6971) Carmichael C1 
19 7279379941 (211)(3571)(9661) Carmichael C2 
20 7825642579 ( 55949)(139871) ( 27974.205) 
21 8118449281 ( 52021)(156061) ( 52020.103) 
22 8236954057 ( 30253)(272269) ( 30252.109) 
23 9085378147 ( 47659)(190633) ( 47658.104) 
24 10563944161 ( 59341)(178021) ( 59340.103) 
25 11821223041 ( 62773)(188317) ( 62772.103) 
26 12883213201 ( 42901)(300301) ( 42900.107) 
27 13677931541 ( 67523)(202567) ( 67522.103) 
28 13955714701 ( 44651)(312551) ( 44650.107) 
29 14735895301 ( 85837)(171673) ( 85836.102) 09 
30 15391036351 ( 48661)(316291) ( 24330.213) 
31 16283099827 ( 63803)(255209) ( 63802.104) 
32 17044925633 ( 75377)(226129) ( 75376.103) 
33 18301178501 ( 55229)(331369) ( 55228.106) 
34 18321066191 ( 55259)(331549) ( 55258.106) 
35 19267579361 ( 80141)(240421) ( 80140.103) 
36 19862784913 ( 53269)(372877) ( 53268.107) 
37 20913703903 (102259)(204517) (102258.102) ?10 
38 24306384961 (19)(53)(79)(89)(3433) Carmichael * 
39 24918616339 ( 49919)(499181) ( 49918.110) 
40 264486,96913 ( 61469)(430277) ( 61468.107) 
41 27811217611 (149161)(186451) ( 37290.405) 
42 28427760433 ( 75403)(377011) ( 75402.105) 
43 30713796101 (101183)(303547) (101182.103) 
44 33209126521 ( 50543)(657047) ( 50542.113) 
45 33996510721 (106453)(319357) (106452.103) 
46 36056194453 (134269)(268537) (134268.102) 
47 39283248493 (125353)(313381) ( 62676.205) 
48 39675460001 (115001)(345001) (115000.103) 
49 43234580143 (223)(5107)(37963) Carmichael 
50 43522383061 (147517)(295033) (147516.102) 
51 46353274003 (152239)(304477) (152238.102) 
52 46690026571 (152791)(305581) (152790.102) 
53 46713465109 ( 65167)(716827) ( 65166.111) 
54 47529840403 (154159)(308317) (154158.102) 
55 47813279821 ( 89269)(535609) ( 89268.106) 
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Most of the entries in Table 1 are (k.cd) examples. Let us note that they are easy 
to factor. Given such an N, compute 

Xm= F4mN 

for m = 2, 3,4 out to a moderate limit until Xm is nearly an integer; e.g., for #5 in 
the table 

X13 = V52 * 517697641 = 164074.000 

so m = 13 = c X d. Then, a short calculation gives its factors. 

3. Perrin's Sequence and Secundo. We have just seen that Perrin's sequence gives 
us a simple, sufficient test for the (approximately) 1763 million Q and I primes < 

50 * 109. For the (approximately) 352 million S primes < 50 109 the test is not 
quite sufficient since there are the 55 composites listed in Table 1. An inelegant but 
practical test for the S primes is obvious: Any n < 50. 109 that has a Perrin 
signature (20) and is not listed in Table 1 is an S prime. (We need not even check 
that (13a) holds.) Probably we could even reduce the algorithm a little; e.g., if we 
already knew, by a preliminary test, that n had no proper divisor' < 225 we could 
delete the three composites in Table 1 divisible by 19, 211 or 223 for a table-lookup. 

Now consider the second A(n) listed in (4), that with f r, s} = {1, 0) and 
d = -31. As we shall see in the next section, there is more than one { r, s } having 
d = -31, and more than one with d = -23. It is desirable to have a name for {1, 0) 
and we will call it Secundo. We have not examined Secundo for all n < 50 * 109-we 
would be pleased if one of our readers would undertake that. Nonetheless, it seems 
probable that Secundo would be somewhat similar to Perrin as stated in Facts 1 and 
2 above. 

As regards the number of acceptable composites in these two sequences, we do 
know this: if we go out to 

(25) n < 250 . 1012, 

which is 5000 times as large as 50 109, Perrin has 736 acceptable composites of 
type (k.102) or (k.103) while Secundo has 753-nearly equal. But, for some 
unknown reason, Secundo starts much more slowly: up to 50. 109 Perrin has 26 
while Secundo has only 7. So, up to 50. 109, Secundo appears to be an even 
stronger test than Perrin. As regards Fact 2, it is quite possible that all composites 
acceptable for Secundo that are < 50 * 109 have S signatures also, but we do not 
know that for a fact. 

Now, returning to sufficient tests for S primes, we can also use 
Fact 3. None of the 55 composites in Table 1 has an acceptable signature for 

Secundo; in fact, it does not even have a signature containing 

(26) ,0, , 19 

Put it another way: No composite < 50 . 109 is acceptable for both Perrin and 
Secundo. How far out is this true? What is the smallest composite acceptable in both 
sequences? We do not know the answer unequivocally but it probably is 

(27) 2277740968903 = 1067179* 2134357 

which exceeds two trillion. We obtain that supposition from the following argument. 
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If (k.102) is acceptable for Perrin, the probability that it is also acceptable for 
Secundo is 1/144. We computed all acceptable (k.102) for Perrin that are < 250 - 
1012. (That is quite easy to do.) There are 428 of them. Therefore, we expect that 
about 3 of them will be found among the 416 examples for Secundo. There are, in 
fact, exactly four coincidences: 

2277740968903, 

(28) 41012029710541, 
173536465910671, 
198789706573921, 

the first of which is (27). 
If (k.103) is acceptable for Perrin, the probability that it is acceptable for Secundo 

is only 1/324 = 1/6 - 6 - 9. So, among the 308 (k.103) < 250 - 1012 acceptable for 
Perrin, we should expect that about one will be found among the 337 examples for 
Secundo. There is exactly one: 

(29) 197529618183301 = 8114383 24343147. 

Incidentally, the ratio of 308 (k.103) to 428 (k.102) in Perrin is close to the predicted 
ratio in [1, p. 273]: 

(30) 3028 =0.720 ~ - =0.726. 

Now, other (k.cd), as seen in Table 1, occur less frequently than (k.102) and 
(k.103), and their corresponding probabilities of being acceptable in Secundo are 
much smaller; e.g., the (k.213) in #30 would have a probability of only 1/24336. 
So, it is perhaps unlikely that any such composite will be smaller than that in (27) 
and that is true also for the rarer Carmichael type. Thus, it is fairly probable that 
(27) is the smallest example. 

An exercise for any computer-loving reader: Find the smallest Carmichael number 
of the form: 

N = (6m + 1)(12m + 1)(18m + 1) 

that is acceptable for both Perrin and Secundo. See [1, p. 274]. 

4. Other A(n). To sum up at this point: Perrin is a sufficient test for all 
primes < 27664033 and for all Q and I primes (5/6 of the primes) < 50* 109. Our 
main question is whether we can extend, or even delete, this last bound. Perrin and 
Secundo, taken together, are sufficient for all primes < 50 - 109 and perhaps for all 
primes < 2277740968903. If both sequences are free from Q- and I-type acceptable 
composites, then they would suffice for 35/36ths of all primes; i.e., for all primes 
except those that are S in both sequences. 

One can envisage adding a third A(n) and presumably the three would suffice up 
to, say, 1018 or 1019, etc. We are not seriously pursuing that program here but we 
should make some comments about a third A(n), a fourth, etc. 

First, we should avoid any A(n) that has a square discriminant such as (-1, -2) 
with d = 49. These cyclic cubic fields have an S prime density of 1/3, not 1/6, and 
therefore will have a much larger number of acceptable composites. Such A(n) may 
well be of theoretical interest but we will avoid them here. 
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Obviously, we should avoid any (1) which is not irreducible since these offer no 
cubic field whatsoever. 

An interesting type of A(n) we should avoid arose in a discussion with William 
Adams. Suppose { r, s} is some A(n). Then by 

(31) {r,s } m wemean {A(m),A(-m)}. 

Therefore, { r, s is the original A(n) whereas (31) is the subsequence 

(32) ... A(-2m), A(-m), A(O), A(m), A(2m),.... 

It is easily seen that (31) and { r, s} have the same cubic field. If d is the polynomial 
discriminant of (1) then that for (31) is some square multiple of d: 

(33) dm= (Sm)2d. 

Consider Perrin = {0, -1). Then, one finds that 

(34) Sm =1 for m = +1, +2, +3, +4, +59 +9 

so there are no less than 12 A(n) for which (1) has the discriminant -23. In contrast, 

=+6=59 s+7 -8 s+8= 79 s+10= 199 

and sm grows rapidly for larger m. 
Of course, the cubic field discriminant remains -23 for all m. Likewise, for all m, 

the primes remain distributed into the same sets S, I, and Q. (There would be a 
minor complication for those primes that divide Sm.) The reader can verify that in 
Secundo we have 

(35) sm =1 for m = + 1,\ + 2, + 3, and + 5 

so here we have eight A(n) with d = -31. 
All these A(n) with Iml > 1 should be avoided whether sm = 1 or not. Consider 

{O, -1}2 = Perrin2. Since it equals 

* A (-4), A (-2), A (0), A (2), A (4), .. 

every S prime p will have a period that divides (p - 1)/2. Whereas, in Perrin, the 
probability of such a period is only 1/4. Therefore {0, -112 should have about four 
times as many acceptable (k.102) as Perrin has, or, about 1700 examples < 250 O 
1012. Likewise, {0, -1)3 will have nine times as many (k.103) or, about 2700 
examples < 250 - 1012. And {0, -16 will have both the 1700 (k.102) and the 2700 

(k.103). 
In Perrin (m = 1) or Perrin reversed (m = -1) the real x that is a root of (1) is a 

fundamental unit of the cubic field while all Iml > 1 will have solutions that are 
powers xm of that fundamental unit. Secundo is also a fundamental unit. 

The next A(n) in (4) is {1, -1) with d = -44. This is also a fundamental unit. For 
the reader's convenience we list the next four with negative discriminants. These also 
are fundamental. 

d r s 

-59 2 0 
-76 3 1 
-83 2 -2 
-87 2 -1 
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For d > 0, even excluding the cyclic d = s2, there are interesting possibilities 
since there is a pair of fundamental units, and infinitely many units may be selected 
as one of the units in a fundamental pair. Thus, the five sequences 

(36) {4,-5}, (7,6), (30,-11}, (12,7}, {-2,-3} 

all have d = 257 and all are fundamental. Although the S, Q and I primes are 
identical in all five sequences, they will have differing sets of acceptable composites. 
Thus {4, -5), and it alone, has 22 with an S signature. (It is an unusual type, not 
found in Table 1, since both 2 and 11 are I primes.) 

Now return to the Q- and I-type composites. Clearly, we prefer that our A(n) 
have none. We could not construct such a composite for Perrin and, as stated, one 
motive for the present paper was to verify that there are none < 50 * 109. Such 
composites were constructed for some other A(n) in [1, p. 297], in [6] and in Adams' 
new paper [7]. But, if c is the composite, usually the d of A(n) is o(c4) and, further, 
if we attempt to minimize Idl, then d usually turns out to be positive. Thus, for any 
large c so constructed, it is unlikely that d will be small and negative such as -23, 
-31,..., -87. 

We do have an amusing "counterexample" for an A(n) that we have already 
discarded. For Perrin4 = {2, -3), one finds that 4 is an acceptable composite with 
an I signature. And this A(n) has d = -23, as we saw in (34). But this c is very 
small (it is hard to find a smaller one) and perhaps this example is exceptional and 
signifies nothing. 

5. Calculations. Here is how we did Perrin to 50 * 109 and thereby obtained Facts 
1, 2 and 3. As we mentioned earlier, by using the doubling rule given in [1], it is easy 
to show that only O(log n) division and multiplication operations are needed to 
compute the signature of any given n. However, if one is looking at a large number 
of n 's for which the signature is to be determined, the total amount of computer 
time required can be prohibitive. Thus, we made use of the results of Section 4 of [1] 
to sieve out many values of n which could not have an acceptable Perrin signature. 
In this section we briefly describe how this was done. 

Let { A(n)} be any sequence given by (2). For any prime p, we must, at some 
point, find an m such that 

(37) A(m) A(0), A(m + 1) A(1), A(m + 2) A(2) (mod p). 

The least positive value of m for which (37) holds is called the period of p and is 
denoted by W(p). If p is an S prime, then W(p)I p - 1; if p is a Q prime, 
W(p) I p2 - 1, and, if p is an I prime, W(p) I p2 + p + 1. In [1] it is shown that if 

(38) mp = kW(p)p + pf, 

where k = 0,1,2, ... and n = 1,2, .. ., then 

(39) A(-mp)=A(-1) and A(mp)=A(1) (modp). 

Indeed, we can restrict n to n < 1,2, 3 for p an S, Q or I prime, respectively. It is 
also proved in 11] that if c = mp and p is either a Q or an I prime, then (39) can 
hold only for mp given by the form (38). Unfortunately, this result does not hold for 
p an S prime. A value of m for which (39) is true but (38) is not is called an 
outsider. However, for a given sequence and a given small prime p, it is a relatively 
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simple matter to determine whether there are any outsiders. For, if there is one, then 
there must be some outsider k < W(p) < p - 1, and this is easy to determine by a 
direct search when p is small. For the S primes needed in our work, we determined 
that there were no outsiders in the Perrin sequence case. 

The composites up to 50* 109 were sieved by running routines written in 
ASSEMBLER language on an AMDAHL 580 model 5850 Computer. These routines 
utilize decimal arithmetic as a convenient way of handling any quadruple precision 
calculations that are necessary. The address of the current segment of composites 
(represented by 106 1-byte flags) is passed to each of these routines. 

By a precomputation, we determined, for each of the first 4770 primes (the 
primes < P4770 = 46099), the corresponding period W(p) for the Perrin sequence. 
These primes have the property that their period can be stored in a single precision 
word of storage. For each p < 46099, the first sieve routine removes all multiples of 
p and then restores all multiples of the form kW(p)p + pfn with n < 1, 2,3 for p an 
S, Q or I prime, respectively. By using the high-order 4 bits of each flag as the 
previous state of the current array, this routine remembers not to restore any 
composite c which has been previously sieved by a different prime p. 

Since no integer of the form mp with m < 40 and p a prime can be an acceptable 
composite [1], our second sieve removes all such integers from our array. After these 
two sieves had been used, it was necessary to find the signatures for only 0.3% of all 
integers < 50 * 109. Our routines were executed on segments of 106 numbers at a 
time. The average time needed to complete our computations on each segment was 
about 30 seconds. After all these calculations had been performed, only the 55 
composite numbers given above were found to have acceptable Perrin signatures. 
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